

19th Cardiovascular Summit TCTAP 2014

Drug-Eluting Stent Failure: Why & How? Drug Eluting Balloon for In-Stent Restenosis: The New Standard of Care

Dr Tan Huay Cheem

MBBS, M Med(Int Med), MRCP (UK), FRCP(Edinburgh), FAMS, FACC, FSCAI Director, National University Heart Centre, Singapore (NUHCS) Associate Professor of Medicine, Yong Loo Lin School of Medicine National University of Singapore President, Asia Pacific Society of Interventional Cardiology

Disclosure Statement of Financial Interest

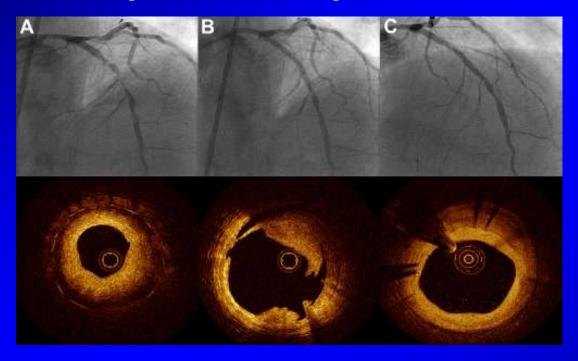
I DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

Advantages of DEB Angioplasty for In-Stent Restenosis

Efficacy

Predominantly firm fibrous nature of neointimal hyperplastic tissue makes acute vessel wall recoil and abrupt vessel closure after PTCA less likely, obviating need for stent placement

Safety


- Shorter duration of drug release and lack of second durable polymer/stent platform favours earlier vascular healing, reduced hypersensitivity, and lower likelihood of stent thrombosis
- Shorter duration of DAPT results in lower bleeding risk and medical cost

Understanding Mechanism of Action of DEB With Angiography & OCT

25 pts with ISR treated with DEB had serial angiographic, OCT and FFR measurements performed before, after procedure and at 6 months

Acutely, DEB mechanically increase lumen and stent volumes by compression of neointimal hyperplasia, with intra-stent dissection; dilatation of old stent
At 6 months, further increase in lumen volume and decrease in neointimal volume, and complete sealing of neointimal dissections ensure vessel patency
Mechanism: Mechanical expansion + local drug release effect

PR Stella et al J Am Coll Cardiol Intv 2013; 6: 569-70

National University Health System

What Are the Evidence for DEB in ISR?

• RCT Comparison of DEB vs POBA

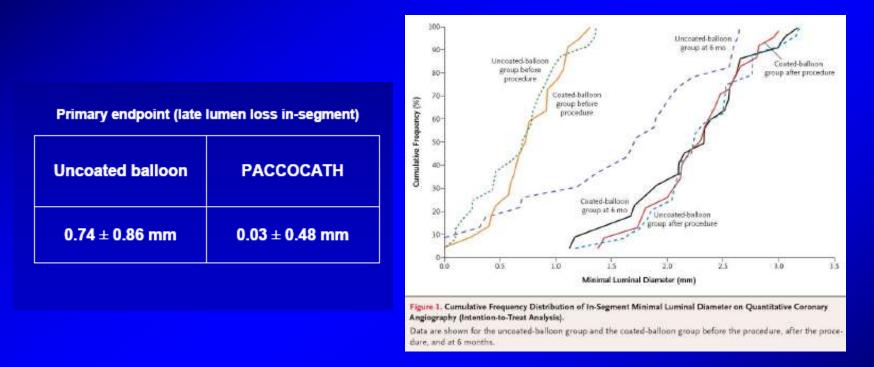
• Worldwide Registries of DEB

• RCT Comparison of DEB vs DES

What Are the Evidence for DEB in ISR?

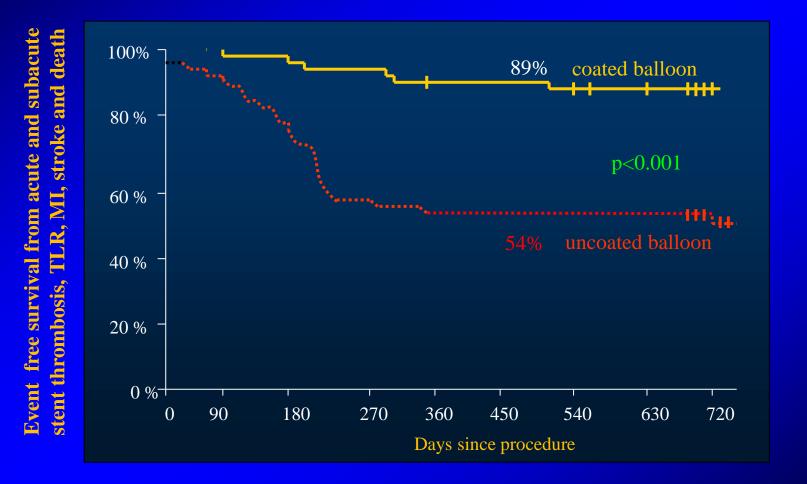
• RCT Comparison of DEB vs POBA

• Worldwide Registries of DEB


• RCT Comparison of DEB vs DES

Treatment of Coronary In-Stent Restenosis with a Paclitaxel-Coated Balloon Catheter (PACCOCATH ISR 1)

52 pts with ISR randomised to DEB and uncoated balloon Primary endpoint: 6 mth late luminal loss on angiography


Conclusions: Treatment of coronary ISR with paclitaxel-coated balloon catheters significantly reduced the incidence of restenosis. Inhibition of restenosis by local drug delivery may not require stent implantation & sustained drug release at the site of injury

NUS

National University Health System

PACCOCATH ISR I/II: Two-Year Follow-up after Treatment of Coronary In-stent Restenosis with Paclitaxel-Coated Balloon Catheter (n=108)

Scheller B et al Clin Res Cardiol 2008; 97: 779-81

8

NUS

PEDCAD-DES

Multicentre randomised comparison of 110 pts with DES ISR to paclitaxel-coated balloon angioplasty or uncoated balloon angioplasty

Clinical Outcomes at 6 Months					
	Drug-Coated Balloon (n=72)	Uncoated Balloon (n=38)	P Value		
Target lesion revascularization	11 (15.3%)	14 (36.8%)	0.005		
Myocardial infarction	0 (0.0%)	1 (2.6%)	0.35		
Cardiac death	1 (1.4%)	4 (10.5%)	0.048		
MACE	12 (16.7%)	19 (50.0%)	< 0.001		
Stent Thrombosis					
Definite	0	0			
Possible	1 (1.4%)	4 (10.5%)	0.048		

Angiographic Outcomes at 6 Months According to Type of Restenotic Stent					
	Drug-Coated Balloon Uncoated Balloon		P Value		
Non-PES	56	31			
Late lumen loss, mm	0.41 ± 0.65	0.90 ± 0.65	0.004		
PES	16	7			
Late lumen loss, mm	0.46 ± 0.50	1.58 ± 1.03	0.021		

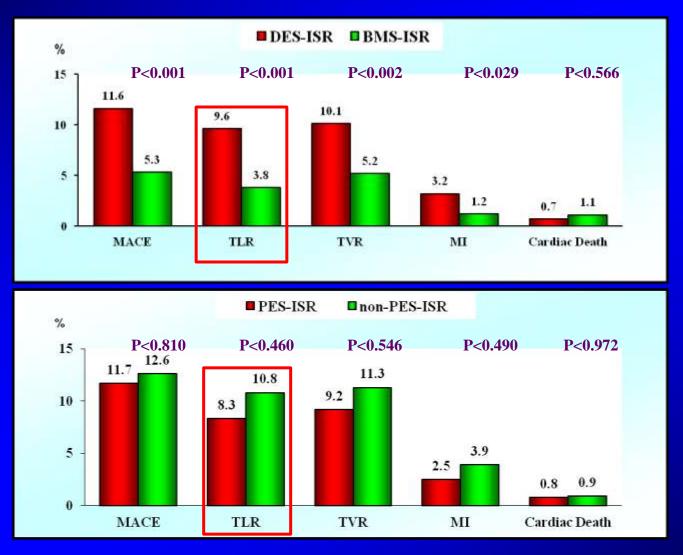
Rittger II et al J Am Coll Cardiol 2012; 59: 1377-82 🛖

☆

What Are the Evidence for DEB in ISR?

• RCT Comparison of DEB vs POBA

Worldwide Registries of DEB

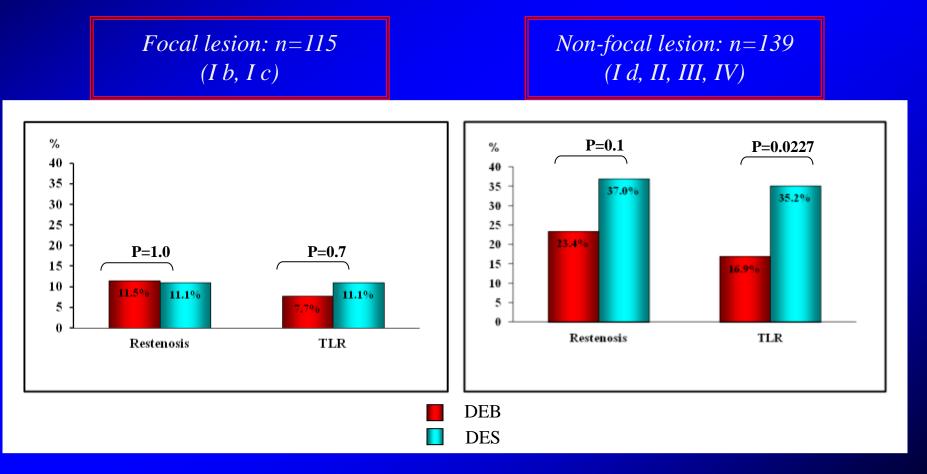

• RCT Comparison of DEB vs DES

Sequent Please World Wide Registry: DEB in DES & BMS-Restenosis

1523 patients with DES & BMS-restenosis- 9-Month Outcome after paclitaxel-eluting balloon

Wöhrle J et al J Am Coll Cardiol 2012; 60: 1733-8 🛖

National University Health System


8

NUS

JAPAN DEB vs SES for Sirolimus-DES *Focal vs Proliferative* ISR: Binary Restenosis & Target Lesion Revascularisation

- 218 pts with 254 lesions between June 2004 to Mar 2011 with SES restenosis were enrolled in analysis
- <u>Nonrandomised</u> comparison of paclitaxel-eluting balloon vs repeat
- Follow-up rate: 70.6% (291/412 Lesions) DEB: 49, DES: 242

Habara S et al Kurashiki General Hospital, Japan

National University Health System

What Are the Evidence for DEB in ISR?

• RCT Comparison of DEB vs POBA

• Worldwide Registries of DEB

RCT Comparison of DEB vs DES

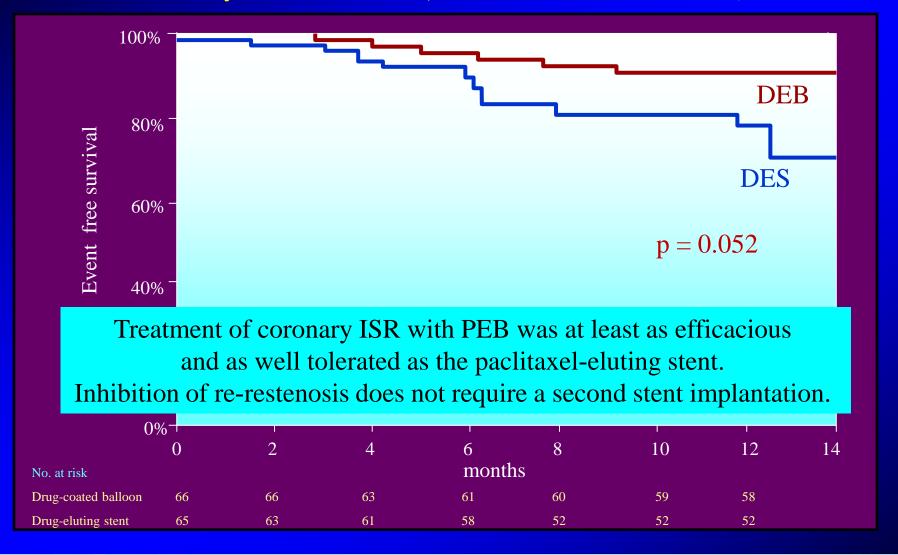
Interventional Cardiology

Paclitaxel-Coated Balloon Catheter Versus Paclitaxel-Coated Stent for the Treatment of Coronary In-Stent Restenosis

• Inclusion criteria: Diameter stenosis of \geq 70% and \leq 22 mm in length, with a vessel diameter of 2.5 to 3.5mm

• Primary endpoint was angiographic in-segment late lumen loss

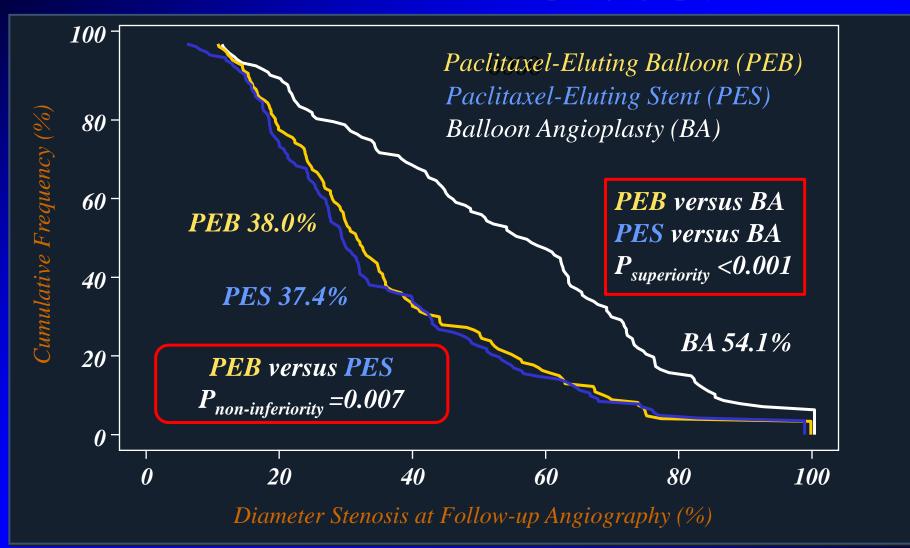
PEPCAD II: Angiographic follow-up					
	DEB	Taxus DES	р		
n	66	65			
Late lumen loss In-segment	$0.17 \pm 0.42 \text{ mm}$	0.38 ± 0.61 mm	0.03		
Binary restenosis rate (In-segment)	7%	20%	0.04		



Unverdorben M et al Circulation 2009; 119: 2986-299

8

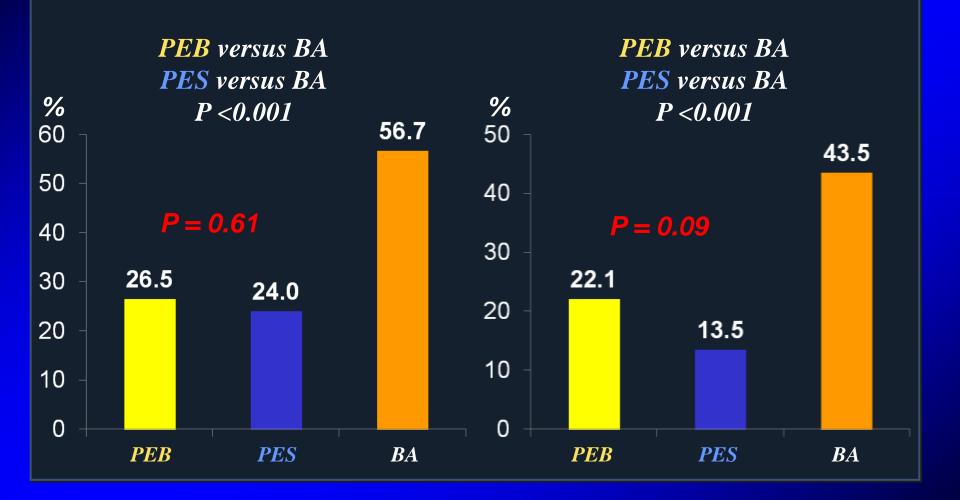
PEPCAD II: Clinical Follow-Up at 12 Mths (Freedom from stent thrombosis, target lesion revascularization, myocardial infarction, and death – intention to treat)



Unverdorben M et al Circulation 2009; 119: 2986-2

National University Health System

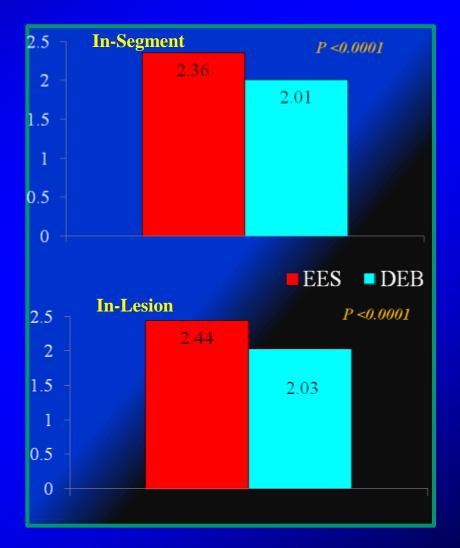
ISAR-DESIRE 3 (DES ISR): Primary Endpoint Diameter Stenosis at Follow-up Angiography



ISAR-DESIRE 3: Secondary Endpoint

Binary Restenosis

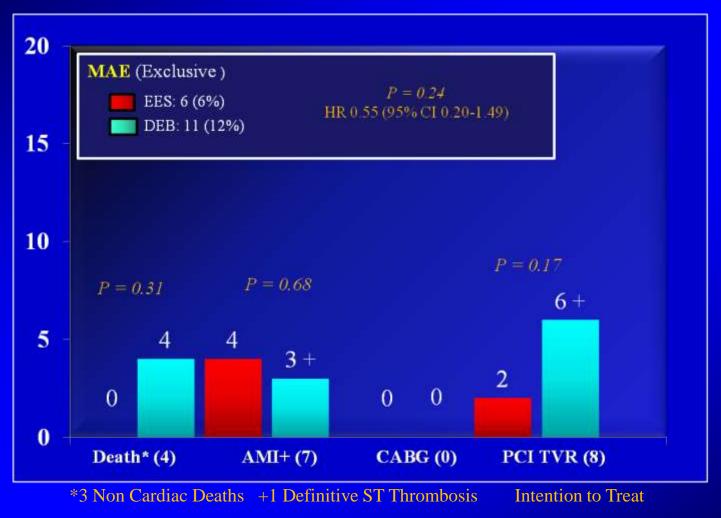
Target Lesion Revascularization


RIBS V: Primary Endpoint MLD at FU

189 pts BMS ISR randomized to Xience Prime[®] vs Sequent Please[®]

Adjusted (age, smoker, diabetes) p=0.001

Mar



RIBS V: Events at Final Follow-Up (1 Year)

(100%) FU, time 361 \pm 28 days

Meta-Analysis of DEB Angioplasty for In-Stent Restenosis

5 studies (PACCOCATH, PEPCAD II, PEPCAD DES, ISAR-DESIRE, Habara et al) with 801 pts analysed. Follow-up duration 12 to 60 mths.

	DEB		Control		Risk Ratio		
	Total	MACE	Total	MACE		RR	95%-CI
PEPCAD-II ISR 2009	66	б	65	14	— 	0.42	[0.17; 1.03]
Habara et a DEB reduces:				No d	ifference ir	1:	[0.01; 0.72]
PACCOC ⁴ • MACE		54	0/2				[0.29; 0.76]
PEPCAD-				• MI			[0.18; 0.61]
ISAR-DES • TLR		66	%	C			[0.51; 1.02]
Random e • In-seg resteno	osis	72	%	• Sten	t thrombosi	LS V.4V	[0.31; 0.70]
		52	0⁄2				
Heterogene • NIOrtality		52	/0				
					0.2 0.5 1 Favors DEB	2 Favors (5 Control

Indermuchle A et al Heart 2013; 99: 327-33 + B National University Health System

Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

For PCI of unstable lesions, i.v. abciximab should be considered for pharmacological treatment of no-reflow.	lla	B
Drug-eluting balloons ^d should be considered for the treatment of in-stent restenosis after prior BMS.	lla	B
Proximal embolic protection may be considered for preparation before PCI of SVG disease.	ШЬ	В

Conclusions

- Paclitaxel drug-coated balloon technology has shown safety and efficacy in the treatment of coronary in-stent restenosis
- Bare-metal stent in-stent restenosis is the only approved indication for use of drug-coated balloon on the European guidelines
- However, it is reasonable also to employ drug-eluting balloon as first option for patients with DES restenosis with current evidence
- Successful use of drug-coated balloon is predicated on operator experience and technical expertise (predilation to achieve 'stentlike' results, avoid 'geographic miss')

